3.381 \(\int \cos ^4(c+d x) (a+a \sec (c+d x))^{5/2} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=164 \[ \frac{a^3 (49 B+54 C) \sin (c+d x)}{24 d \sqrt{a \sec (c+d x)+a}}+\frac{a^{5/2} (25 B+38 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{8 d}+\frac{a^2 (3 B+2 C) \sin (c+d x) \cos (c+d x) \sqrt{a \sec (c+d x)+a}}{4 d}+\frac{a B \sin (c+d x) \cos ^2(c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d} \]

[Out]

(a^(5/2)*(25*B + 38*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(8*d) + (a^3*(49*B + 54*C)*Sin
[c + d*x])/(24*d*Sqrt[a + a*Sec[c + d*x]]) + (a^2*(3*B + 2*C)*Cos[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*
x])/(4*d) + (a*B*Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.566515, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 42, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.119, Rules used = {4072, 4017, 4015, 3774, 203} \[ \frac{a^3 (49 B+54 C) \sin (c+d x)}{24 d \sqrt{a \sec (c+d x)+a}}+\frac{a^{5/2} (25 B+38 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{8 d}+\frac{a^2 (3 B+2 C) \sin (c+d x) \cos (c+d x) \sqrt{a \sec (c+d x)+a}}{4 d}+\frac{a B \sin (c+d x) \cos ^2(c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*(a + a*Sec[c + d*x])^(5/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a^(5/2)*(25*B + 38*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(8*d) + (a^3*(49*B + 54*C)*Sin
[c + d*x])/(24*d*Sqrt[a + a*Sec[c + d*x]]) + (a^2*(3*B + 2*C)*Cos[c + d*x]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*
x])/(4*d) + (a*B*Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d)

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4017

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*n), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rule 4015

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[(A*b^2*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(a*f*n*Sqrt[a + b*Csc[e + f*x]]), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cos ^4(c+d x) (a+a \sec (c+d x))^{5/2} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int \cos ^3(c+d x) (a+a \sec (c+d x))^{5/2} (B+C \sec (c+d x)) \, dx\\ &=\frac{a B \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac{1}{3} \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \left (\frac{3}{2} a (3 B+2 C)+\frac{1}{2} a (B+6 C) \sec (c+d x)\right ) \, dx\\ &=\frac{a^2 (3 B+2 C) \cos (c+d x) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac{a B \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac{1}{6} \int \cos (c+d x) \sqrt{a+a \sec (c+d x)} \left (\frac{1}{4} a^2 (49 B+54 C)+\frac{1}{4} a^2 (13 B+30 C) \sec (c+d x)\right ) \, dx\\ &=\frac{a^3 (49 B+54 C) \sin (c+d x)}{24 d \sqrt{a+a \sec (c+d x)}}+\frac{a^2 (3 B+2 C) \cos (c+d x) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac{a B \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac{1}{16} \left (a^2 (25 B+38 C)\right ) \int \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{a^3 (49 B+54 C) \sin (c+d x)}{24 d \sqrt{a+a \sec (c+d x)}}+\frac{a^2 (3 B+2 C) \cos (c+d x) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac{a B \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac{\left (a^3 (25 B+38 C)\right ) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{8 d}\\ &=\frac{a^{5/2} (25 B+38 C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{8 d}+\frac{a^3 (49 B+54 C) \sin (c+d x)}{24 d \sqrt{a+a \sec (c+d x)}}+\frac{a^2 (3 B+2 C) \cos (c+d x) \sqrt{a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac{a B \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 1.29786, size = 121, normalized size = 0.74 \[ \frac{a^2 \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sec (c+d x)+1)} \left (\cos (c+d x) \sqrt{\sec (c+d x)-1} (2 (17 B+6 C) \cos (c+d x)+4 B \cos (2 (c+d x))+79 B+66 C)+3 (25 B+38 C) \tan ^{-1}\left (\sqrt{\sec (c+d x)-1}\right )\right )}{24 d \sqrt{\sec (c+d x)-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*(a + a*Sec[c + d*x])^(5/2)*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a^2*(3*(25*B + 38*C)*ArcTan[Sqrt[-1 + Sec[c + d*x]]] + Cos[c + d*x]*(79*B + 66*C + 2*(17*B + 6*C)*Cos[c + d*x
] + 4*B*Cos[2*(c + d*x)])*Sqrt[-1 + Sec[c + d*x]])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(24*d*Sqrt[-1
+ Sec[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.567, size = 583, normalized size = 3.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(a+a*sec(d*x+c))^(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x)

[Out]

-1/192/d*a^2*(75*B*cos(d*x+c)^2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+114*C*cos(d*x+c)^2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c
)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+150*B*c
os(d*x+c)*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+228*C*cos(d*x+c)*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*arctanh(1/2*
2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+75*B*2^(1/2)*(-2*cos(d*x+c)/(co
s(d*x+c)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*sin(d*x+c)+
114*C*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*si
n(d*x+c)/cos(d*x+c))*sin(d*x+c)+64*B*cos(d*x+c)^6+208*B*cos(d*x+c)^5+96*C*cos(d*x+c)^5+328*B*cos(d*x+c)^4+432*
C*cos(d*x+c)^4-600*B*cos(d*x+c)^3-528*C*cos(d*x+c)^3)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c
)^2

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 0.655, size = 976, normalized size = 5.95 \begin{align*} \left [\frac{3 \,{\left ({\left (25 \, B + 38 \, C\right )} a^{2} \cos \left (d x + c\right ) +{\left (25 \, B + 38 \, C\right )} a^{2}\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \,{\left (8 \, B a^{2} \cos \left (d x + c\right )^{3} + 2 \,{\left (17 \, B + 6 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \,{\left (25 \, B + 22 \, C\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{48 \,{\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac{3 \,{\left ({\left (25 \, B + 38 \, C\right )} a^{2} \cos \left (d x + c\right ) +{\left (25 \, B + 38 \, C\right )} a^{2}\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) -{\left (8 \, B a^{2} \cos \left (d x + c\right )^{3} + 2 \,{\left (17 \, B + 6 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \,{\left (25 \, B + 22 \, C\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \,{\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/48*(3*((25*B + 38*C)*a^2*cos(d*x + c) + (25*B + 38*C)*a^2)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sq
rt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*
(8*B*a^2*cos(d*x + c)^3 + 2*(17*B + 6*C)*a^2*cos(d*x + c)^2 + 3*(25*B + 22*C)*a^2*cos(d*x + c))*sqrt((a*cos(d*
x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -1/24*(3*((25*B + 38*C)*a^2*cos(d*x + c) + (25*B
 + 38*C)*a^2)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (8
*B*a^2*cos(d*x + c)^3 + 2*(17*B + 6*C)*a^2*cos(d*x + c)^2 + 3*(25*B + 22*C)*a^2*cos(d*x + c))*sqrt((a*cos(d*x
+ c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(a+a*sec(d*x+c))**(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 7.6083, size = 1177, normalized size = 7.18 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(5/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

-1/48*(3*(25*B*sqrt(-a)*a^2*sgn(cos(d*x + c)) + 38*C*sqrt(-a)*a^2*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2
*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(25*B*sqrt(-a)*a^2*sgn(cos(d*
x + c)) + 38*C*sqrt(-a)*a^2*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x +
1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)*(75*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x +
1/2*c)^2 + a))^10*B*sqrt(-a)*a^3*sgn(cos(d*x + c)) + 114*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x
+ 1/2*c)^2 + a))^10*C*sqrt(-a)*a^3*sgn(cos(d*x + c)) - 1125*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d
*x + 1/2*c)^2 + a))^8*B*sqrt(-a)*a^4*sgn(cos(d*x + c)) - 1710*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2
*d*x + 1/2*c)^2 + a))^8*C*sqrt(-a)*a^4*sgn(cos(d*x + c)) + 6174*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1
/2*d*x + 1/2*c)^2 + a))^6*B*sqrt(-a)*a^5*sgn(cos(d*x + c)) + 6804*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan
(1/2*d*x + 1/2*c)^2 + a))^6*C*sqrt(-a)*a^5*sgn(cos(d*x + c)) - 4314*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*t
an(1/2*d*x + 1/2*c)^2 + a))^4*B*sqrt(-a)*a^6*sgn(cos(d*x + c)) - 4284*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a
*tan(1/2*d*x + 1/2*c)^2 + a))^4*C*sqrt(-a)*a^6*sgn(cos(d*x + c)) + 807*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-
a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*sqrt(-a)*a^7*sgn(cos(d*x + c)) + 858*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(
-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*sqrt(-a)*a^7*sgn(cos(d*x + c)) - 49*B*sqrt(-a)*a^8*sgn(cos(d*x + c)) - 54*
C*sqrt(-a)*a^8*sgn(cos(d*x + c)))/((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6
*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^3)/d